首页> 外文OA文献 >Strategies for Energy-Efficient Resource Management of Hybrid Programming Models
【2h】

Strategies for Energy-Efficient Resource Management of Hybrid Programming Models

机译:混合编程模型的节能资源管理策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.
机译:由于具有多核,多插槽节点的大规模系统的日益普及,使用混合编程模型对许多科学应用程序进行了编程,这些模型同时使用消息传递和共享内存。先前的工作表明,使用软件控制的执行方案可以提高能源效率,该方案同时考虑了编程模型和系统的功耗感知执行能力。但是,这样的方法集中于为一个编程模型(共享内存或消息传递)独立地标识最佳资源利用。当优化混合模型时,潜在的解决方案空间(即挑战)会大大增加,因为可能的资源配置呈指数增长。但是,随着混合编程模型的不断采用,我们越来越需要在大型系统的混合并行应用中提高能效。在这项工作中,我们提出了新的软件控制的执行方案,该方案考虑了混合编程模型中动态并发节流(DCT)和动态电压和频率缩放(DVFS)的影响。具体来说,我们提供了基于统计分析的预测模型和新颖算法,这些模型可以预测不同并发和频率配置下的应用程序功率和时间要求。我们将模型和方法应用于NPB MZ基准和ASC红杉代码中选定的应用程序。总体而言,我们实现了可观的能源节省(平均8.74%,最高13.8%),并获得了一些性能提升(高达7.5%)或微不足道的性能损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号